Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
Share Post: Reddit Facebook
AMD vs Intel: Who makes the better CPU?
#1
Quote:AMD vs Intel CPUs: Performance, features, and everything else you need to know about which CPU is best for you.

AMD vs Intel CPUs, which is better? Technology enthusiasts have been arguing about this for decades. Intel has traditionally held the upper hand, but AMD's Ryzen processors are shaking things up, particularly when paired with the best AMD motherboard. Here's the current state of AMD and Intel CPUs, the pros and cons of each, and everything else you really need to know about the great CPU debate. And if you're wondering which one to buy, check our guide to the best CPUs for gaming, and grab one of the best graphics cards to pair it with.

Note that for this article, I'm focusing primarily on mainstream desktop CPUs. Both AMD and Intel offer a variety of processors, including mobile and server solutions. The mobile chips are often similar to the desktop parts, only with lower clockspeeds and power use, while server and workstation solutions generally cost a lot more and aren't really necessary for most consumers any longer.


Intel 8th and 9th Gen CPUs

The fastest gaming CPUs right now are Intel's latest (8th and 9th) generation CPUs, codenamed Coffee Lake. The first 8th Gen parts came out in late 2017, while the first 9th Gen CPUs arrived one year later in October 2018. All the 8th and 9th Gen desktop CPUs run in socket LGA1151 motherboards with 300-series chipsets. That's not to be confused with LGA1151 motherboards with 100-series or 200-series chipsets, as those are for 6th and 7th Gen Intel processors.

Intel's CPUs tend to be bespoke designs, adding cores in pairs with 4MB or 3MB L3 cache per pair (1MB can be disabled). Intel also disables Hyper-Threading support (two threads per core) on many of its processors. The major desktop CPUs from Intel right now include the Core i9-9900K / i9-9900KS, Core i7-9700K, Core i5-9600K, and Core i3-8100.

Clockspeed for Intel CPUs can vary quite a bit, with base clocks as low as 3.6GHz and turbo clocks as high as 5.0GHz. While that might seem like a huge range, many enthusiast motherboards will run the 8th and 9th Gen CPUs at speeds much closer to the maximum turbo clock—so the i9-9900K for example typically runs at 4.7-5.0GHz in my test PC.

Only the K-suffix Intel processors are unlocked, so if you don't get a part ending with a K (or KF), you can't overclock at all. The K-series Intel CPUs also come without a heatsink, so you'll need to provide one—and typically, you'll want a good liquid cooling solution for the 6-core and 8-core models. The F-suffix processors also come without Intel's UHD Graphics 630, which doesn't actually matter much at all if you're going to install your own graphics card for gaming purposes. F-series parts are a reasonable way to save $20-$30.


Intel typically only supports one or two generations of CPU on its motherboards, sockets, and chipsets. The 8th and 9th Gen CPUs work in the same boards (though not all boards can support the i9-9900K), but I don't expect Intel's future 10th Gen (or whatever comes next) CPUs to run in today's motherboards. Intel's current 300-series chipsets consist (in terms of decreasing features) of the Z390, Z370, H370, B360, B365, Q370, and H310. Only the Z390 and Z370 support overclocking, including running system RAM at higher than spec clocks, so we largely recommend the Z-series boards. If you don't care about overclocking, the H370 chipset is fine, though again don't pay extra for enthusiast memory as you won't be able to use its full potential.

Intel's desktop 8th and 9th Gen CPUs come with 16 PCIe lanes, which can interface with either a single x16 slot, two x8 slots, or an x8 slot and two x4 slots. Deciding which configurations to support is up to the motherboard manufacturer. The CPU interfaces with the chipset (aka PCH, or Platform Controller Hub) via a DMI 3.0 interface that's basically the equivalent of an x4 PCIe Gen3 connection, with up to 4GB/s of bandwidth in each direction.


AMD Ryzen CPUs:

AMD fell way behind in the CPU race during the past decade, but that all changed in 2017 with the introduction of the Ryzen processors. Per-core CPU performance improved by roughly 50 percent over AMD's previous FX-series parts, and suddenly things became very interesting in the CPU space. Perhaps more importantly, where Intel at the time was pushing 4-core/8-thread CPUs as its fastest mainstream solutions, AMD doubled down and released 8-core/16-thread parts at comparable prices. Intel responded with its 8th and 9th Gen parts. Now, Ryzen 3000 is pushing 16-core/32-thread in it's top-tier 3950X.

Back in July, AMD launched the first Ryzen 3000 CPUs. It's an impressive lineup that goes toe-to-toe with Intel's fastest offerings, and while it does fall a bit behind in gaming performance when paired with top-tier graphics cards, overall these are impressive CPUs. Plus, if you pair any of the CPUs with a lower-tier GPU or resolutions above 1080p, it's mostly a tie in gaming performance. The Ryzen 3000 chips have other benefits, as well. AMD's 7nm parts use far less power than Intel's 14nm++ equivalents, sometimes by about 50W depending on the workload.


AMD vs Intel: How the CPUs differ in performance

For many users, the difference between any of the current generation AMD and Intel CPUs is negligible. All of them can surf the Internet, stream Netflix, run office applications, multitask between all of those, and more. The only way to really uncover differences is to run demanding workloads, which we do for our CPU reviews.

For multithreaded application workloads, the Ryzen 7 3700X trades blows with the Core i7-8700K and Core i7-9700K—it's a tad slower in some cases, faster in others, but it costs quite a bit less as well (factoring in the price of a cooler). Most users would likely never notice the difference. Step up in price and you have Intel's i9-9900K and AMD's Ryzen 9 3900X. The 3900X is about 25 percent faster in multithreaded workloads, thanks to having 50 percent more cores. If you do content creation, AMD is looking extremely attractive.

Shift over to games, and differences can become more noticeable. With a high-end GPU like an RTX 2080 or RTX 2080 Ti, the fastest Intel CPUs typically lead AMD's best Ryzen parts by 5-10 percent, and in some games the gap can be as large as 15 percent. The gap shrinks at 1440p and 4K, though, and if you're going with a mainstream build using an RX 5700 XT or RTX 2070 Super, the difference in gaming performance between a 9900K or 3900X is basically just noise.

AMD vs Intel: What about security?

It used to be that Intel processors and platforms were considered more secure than AMD solutions. But security is a vague term that can be hard to define, and most problems trace back to software, not hardware. But then Meltdown and Spectre happened.

Using low-level architectural details, security researchers were able to figure out side-channel attacks that could compromise the security of data. Meltdown affected AMD and Intel platforms to varying degrees, and changes in firmware as well as operating systems were required to address the problem. Spectre was a bit more elusive and mostly targeted Intel CPUs, however, and since the initial exploits were detailed, multiple new exploits have come about: Foreshadow, Spoiler, Lazy FPU Restore, and more.


Continue reading HERE
Reply


Please note that new posts in this forum must be approved by a moderator before becoming visible.
[-]
Quick Reply
Message
Type your reply to this message here.

Human Verification
Please tick the checkbox that you see below. This process is used to prevent automated spam bots.

Forum Jump:


Users browsing this thread: 1 Guest(s)